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ABSTRACT: Object tracking technology is of great interest to our species. The Global Positioning
System (GPS) works well outdoors but has limitations indoors. To date, the most efficient methods
for indoor tracking are derived from WiFi networks, where the signal strength from radio signals is
converted to concrete measurements with a building. Our goal was to improve real time localization
indoors using a derivation of a technique called Navigation by Scene Familiarity developed from
studies of ants. The idea is that the pixelated eyes of these insects convert scenes to matrices of
stored information that can be used to retrace a path back to a goal. We adapted this approach
by developing an algorithm that uses a series of geometric formulas to pinpoint the location of a
panoramic test image by comparing a pixelated version of the test image to a grid of panoramic
images taken at known positions. We used a grid of 900 images taken from a building hallway to test
the accuracy of our method by varying both the sensor resolution (pixel density) and landscape image
spacing. We found that test image accuracy does not vary much for sensor matrices greater than
10x10 but varies considerably based on image spacing. Location accuracy was about 10 cm for grid
images spaced at 25.4 cm. Our method appears more accurate than WiFi localization techniques and
may be useful in applications where accuracy is of utmost importance.
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Introduction

Problems arising from current localization
methods
The Global Positioning System (GPS) was developed
by the U.S. Department of Defense in the early 1970s
and is a satellite-based navigation system [6]. GPS is
arguably the most popular method of navigation assis-
tance and enjoys broad use by a variety of societal en-
tities, including technology companies, militaries, and
civilians. It uses an aerial satellite system to locate
coordinates by microwave radio signals throughout
the world. GPS technology can be found on smart
phones, watches, and in most cars, to assist people
with traveling or localization. However, GPS avail-
ability and popularity comes at great expense. For
example, in fiscal years 2016 and 2017, the government
spent $938 million and $847.4 million, respectively
(U.S. Department of Defense 2015; 2016) and $1.1

billion was budgeted for GPS during the 2018 fiscal
year (U.S. Department of Defense 2017).

The accuracy of GPS depends on numerous fac-
tors such as satellite availability, global location, at-
mospheric conditions, infrastructure blockage, and
receiver quality (Standard Positioning Service Perfor-
mance Analysis Report). Along with these factors,
user technological quality also plays a role. GPS
receiver equipment ranges from cheaper consumer-
grade localization units to expensive military and
professional-grade equipment [14, 5]. Civilians using
a GPS localization system can expect an accuracy
of approximately 5-10 meters (Standard Positioning
Service Performance Analysis Report).

Even though GPS continues to be successful and
beneficial, it is hampered in some places outdoors
and it is of limited use indoors due to structural
interference with satellite signals. As such, various lo-
calization methods have been developed and tested to
improve precision both outdoors and indoors. Some of
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these methods include Simultaneous Localization and
Mapping (SLAM; [12], Speeded Up Robust Features
(SURF; [4]), and WiFi localization. Of these meth-
ods, WiFi localization seems to be the most accurate
and popular, with a positioning approach similar to
GPS. The most accurate method uses a single WiFi
access point and time-of-flight calculations to detect
the location of a client in an indoor structure [18].
The median reported error is 65 cm during line-of-
sight measurements and 98 cm during non-line-of-sight
measurements [18].

SLAM is a method of navigation that focuses on
an agent creating a map of an unknown area while
simultaneously using that map to navigate and locate
its position within the map [17]. This method was
pioneered by two groups of researchers interested in
mobile indoor robotics and their relative positioning
[15, 10]. Even though SLAM has been popular for
indoor navigation for approximately two decades now,
the algorithms are complicated and there are issues in
outdoor and indoor environments that have too little
or too much visual information [7].

SURF is a more recent technique that was devel-
oped in 2006 and has been applied to many naviga-
tional trials [4]. However, the algorithms needed for
this method are complex and sometimes ambiguous.
Also, the individual images used by SURF must be
descriptive and distinct to allow the feature detection
algorithms to work; in particular, the process occa-
sionally has difficulties distinguishing images due to
adjacent image borders and similarity between scenes
[1].

Our goal is to improve indoor navigation and lo-
calization without using radio signals while also sim-
plifying the methodology. Our approach is inspired
by the Navigation by Scene Familiarity Hypothesis
(NSFH) proposed for insect navigation [2]. It can
be used in various situations and without the use of
radio signaling technology such as GPS and WiFi.
The method is parsimonious, does not require expen-
sive or complicated technology, and requires little to
no maintenance once established. Furthermore, our
current accuracy exceeds reported WiFi localization
methods.

Introduction to scene familiarity and pre-
vious work
Insect navigation has been extensively investigated
because of the animals’ ability to navigate swiftly and
precisely despite their small brains. The NSFH sug-
gests a method of navigation that is compatible with
the simplicity of an insect’s brain and does not require
sequential memorization of landmarks along the route

[2]. Instead, it is proposed that these insects use a
measure of familiarity while navigating, comparing
current pixelated views to those stored in memory.
This method of navigation has been applied to a com-
puter software algorithm that allows an autonomous
agent to recapitulate a training path based on scene
familiarity [8].

The key feature of the NSFH is that visual scenes
are unique when processed through the complex pix-
elated eyes of navigating insects. More specifically,
insects use the catchment areas created by the pixel-
by-pixel differences between a scene and its adjacent
scenes to guide them along their previously experi-
enced route [13]. The summed absolute pixel-by-pixel
differences (SAD) between a single image when com-
pared to the surrounding images creates a funnel-like
plot (Fig 1). The single image selected for comparison
is at the lowest point of the funnel and the slopes
enclosing the single image rise smoothly with distance
from this image [16]. To navigate, the insect scans
its surroundings and simply moves towards areas that
reduce the discrepancy between the current view and
the scenes stored in memory [2]. There is no need for
odometrical measurements or a geomagnetic compass
when using this technique and there is no cognitive
map as proposed by some previous work [9, 11]. As
proof of concept, a gantry robot traveled successfully
along a previously experienced path using scene com-
parison and familiarity [3].

Figure 1: Catchment area plot. When a test image
is selected and compared against all other images in
the grid, a funnel shape catchment area forms over
the focal test image. The similarity of an image to
the focal image is indirectly related to the distance
between them. The color blue indicates lover values
and greater similarity, while red indicates the opposite.

In this study, we incorporate a second algorithm
based loosely on the scene familiarity algorithm to
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accurately localize a point within a pre-defined grid of
images. The tracking algorithm uses the SAD values
of the agent’s current view compared to a pre-localized
grid of panoramic images and a series of geometrical
formulas to localize the agent’s position. We first used
a dense, pre-existing landscape of hallway panoramic
images to derive the most efficient and accurate image
spacing and scene resolution for our algorithm. We
then tested the system’s ability to pinpoint several
locations within a new image grid. The tracking
algorithm has proven accurate to within 0.1 meters.

Materials and Methods

Description of the tracking algorithm
In the trials discussed below, we declare the images
that make up the pre-defined grid as landscape images,
which serve as the reference points for the tracking
algorithm and we declare the images that we desire
to be located as test images.

To develop the tracking algorithm, we used a pre-
existing, high density scan of 900 images acquired
from a hallway on the first floor of Richards Hall on
the campus of the University of Oklahoma [8]. The
900 images were equally spaced at 12.7 cm, taken at
a height of 128 cm with an upward facing panoramic
lens, circularized and pixelated to a 100x100 pixel
resolution (Fig 2), and saved in a MATLAB structured
array. These individually plotted images formed a
20x45 coordinate grid that served as landscape points.

To initiate the algorithm, the SAD between a test
image and each image in the landscape image grid
are calculated and the three images in the landscape
with the lowest values are selected (which presumably
are the ones nearest to the test image). Next, three
hypothetical circles with radii representing the SAD
of the selected images are drawn around the respective
image points (Fig 3). The radii of these circles form
two triangles adjacent to each other, with the lowest
SAD value forming a side that is shared between the
triangles with identical lengths. The shared vertex
of the triangles meets approximately at the desired
test location. At this point, we calculate the average
pixel value (APV) between three landscape points
that surround the test point. The APV is used to
relate and convert the given pixel value to distance by
dividing the APV by the distance between points (in
cm) to give a pixel/centimeter (pix/cm) ratio. The
pixel value of the three lowest points (the three points
closest in proximity) are divided by the pix/cm ratio
which allows use of these values directly in the tracking
algorithm.

The geometrical equations in the algorithm begin

Figure 2: Circularized image. Panoramic images taken
from Bloggie camera facing the ceiling are pixelated
to a 100x100 grid and circularized in MATLAB

Figure 3: Determining test image location using SAD
analysis. The four surrounding blue points represent
the landscape points. The green point in the middle
represents the test point that is being located by the
algorighm. (L = distance between landscape points; T
= triangle; h = height; d’ = distance between closest
landscape point and vertex of triangle)

with separately finding the area of both triangles using
Heron’s perimeter formula, perimeter (s) = (a+b+c)

2 ,
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and then using Heron’s area formula, Area (A) =√
s(s− a)(s− b)(s− c). Next, the areas of each tri-

angle are used to find the height of the triangles by
rearranging the height formula, height (h) = 2A

base .
Using the height of the individual triangles and the ra-
dius of the image with lowest pixel value, the distance
between the closest point and the vertices of both
triangles is found with Pythagorean’s theorem, dis-
tance (d) =

√
base2 − height2. The distance of one

triangle will always be in the same direction as the
height of the opposing triangle, and vice versa. Next,
the coordinates of the test point are approximated
using midpoint formulas, x1+x2

2 , y1+y2
2 , because its

location will be an equal distance between the two
triangle vertices. Depending on the position of the
test point, in regard to the three landscape points,
we can multiply the x-direction value and/or the y-
direction value by negative one to dictate the correct
orientation.

Overview of the algorithm
1. Calculate the area of each triangle (Heron’s For-
mula):

perimeter(s) =
(a+ b+ c)

2
. (1)

Area(A) =
√

s(s− a)(s− b)(s− c). (2)

2. Calculate height by rearranging triangle height
formula: height

(h) =
2A

base
. (3)

3. Calculate distance between lowest pixelated point
and vertex (Pythagorean’s theorem) distance:

(d′) =
√
base2 − height2. (4)

4. Calculate midpoint for x-direction and y-direction
using distance and height (midpoint formulas):

x1 + x2

2
,
y1 + y2

2
. (5)

Optimizing the components of the algo-
rithm
We used the landscape image dataset to further exam-
ine optimal spacing between landscape points along
with optimal pixel resolution. To measure optimal
spacing between landscape points, we reduced the
number of landscape points from a 20x45 grid to a
10x23 grid of 230 images by removing the outer edge
of landscape points in MATLAB. We then systemati-
cally removed points within the grid to increase the
distance between landscape points from 12.7 cm to

25.4 cm. We repeated this process to create a 7x15
grid of 105 images spaced at 38.1 cm, a 5x12 grid of
60 images spaced at 50.8 cm, a 4x8 grid of 32 images
spaced at 76.2 cm, and a 3x6 grid spaced at 101.6 cm.
Removing landscape points from the initial 900-image
grid allowed us to designate the eliminated images
as test images, while testing the spacing of our land-
scape simultaneously. For the different grid sizes, we
selected the same nine test images in various loca-
tions within the grid to analyze the accuracy of the
algorithm depending on test image location (Fig 4).

We also tested resolution by changing the pixel
density of the circularized panoramic images in each
grid. The tracking algorithm was tested for accuracy
using the five grids and tested at resolutions varying
from 10x10 pixels to 100x100 pixels. After the photos
were circularized and pixelated in MATLAB, an inner
circle of the image was cropped out to eliminate the
visually inferior quality of the ceiling from the images,
allowing the NSFH algorithm to focus on the visu-
ally rich walls of the hallway. Each image retained
approximately 62% of its original image after editing
(Fig 5).

Error calculations
The pre-recorded location of a test image and the out-
put from the tracking algorithm were both presented
as (x, y) values. The localization error was calculated
by first finding the absolute difference between the
pre-recorded location of the test image and the lo-
calization output from the tracking algorithm. Next,
the (x, y) error values were inserted into the equation,√

x2 + y2, to determine the localization error for the
tracking algorithm. This form of localization error
was used with the purpose of calculating the upper
boundary of the error, to conclude that the location
of the test image according to the tracking algorithm
could not exceed the calculated error.

Examples of animations showing the image com-
parison process for 4x8, 10x23, and 20x45 landscapes
can be downloaded here: 4x8 grid animation; 10x23
grid animation; 20x43 grid animation.

Results and Discussion
The results show that the tracking algorithm is more
dependent on landscape image-spacing than pixel res-
olution (Fig 6). The algorithm’s accuracy is indirectly
correlated with landscape grid spacing. The 10x23
grid (25.4 cm spacing between points) produced an
average localization error of 9.28 ± 1.84 cm for pixel
resolution 20x20 to 100x100; the 20x20 resolution was
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Figure 4: Test image locations within 900-point image landscape. Points were removed from the grid to create
various spacings between the landscape images. The test image locations, which are standardized for all grids, are
marked with "X".

the most accurate at 9.055 ± 1.76 cm. The accuracy
decreased to over 100 cm for the 3x6 grid (101.6 cm
between points). In general, within each grid spac-
ing, there was no significant difference in accuracy
among pixel resolutions 20x20 to 100x100, but the
20x20 resolution tended to be slightly more accurate
than others. However, the 10x10 resolution accuracy
for the 230-image grid (10x23) and the 105-image
grid (7x15) were approximately 2.4 times greater than
the average localization accuracy of other resolutions.
The remaining three grids (5x12, 4x8, 3x6) with fewer
landscape images did not produce a significant de-
crease in localization accuracy at the 10x10 resolution.
See the appendix for the results of test images at var-
ious resolutions with a new landscape grid taken at a
different camera elevation.

The tracking algorithm successfully located the
nine test images within the 900-image grid with a
localization error of 9.06 ± 1.76 cm (10x23 grid, 20x20
resolution). The 20x20 pixel resolution produced the
best accuracy overall, but there were no significant
differences between the pixel resolutions for resolutions

greater than 10x10. The tracking algorithm is more
accurate than current localization via WiFi [18].

A plausible reason for the inaccuracy at grids with
fewer images and increased spacing could be due to
the poor catchment areas that form during the image
comparison process. We noticed that the catchment
areas that formed when using the 230-image, 10x23
grid were much more defined than the catchment areas
that formed when using the 32-image, 4x8 grid (Fig 7).
We hypothesize that the quality of the catchment areas
plays an important role in our tracking algorithm as
it does in insect navigation schemes proposed in other
studies [19].

The accuracy of this indoor localization method
suggests that the tracking algorithm could be used in
various applications that are difficult for other forms
of indoor localization. For example, it might be useful
for accurately delivering medications in a crowded
hospital where patients’ beds are in close proximity of
each other. In a less life-affecting situation, it might
be possible to remove chain referees, line judges, and
ball spotters from football games. These officials
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Figure 5: Circularized, pixelated, panoramic image
with cropped center.

use an archaic method to attempt to spot the exact
position of the football at the end of each play. This
process is subject to human error opinion and is hotly
contested by coaches and sports pundits. The tracking
algorithm could eliminate human error by precisely
locating the football on the field after a play. A small
micro-cinema camera would be placed on the football
and designated as the test image. Landscape images
could be marked throughout the football field prior
to competition and would be taken at ground level.
After the play, the players on the field would gather
in their respective huddles near the sidelines to allow
for the tracking algorithm to localize the position of
the football.

The tracking algorithm could also be used to assist
with marketing techniques. Many superstores use
marketing algorithms based on same-trip purchases
to place items in their stores. Placing a camera on a
shopping cart that records the location of a shopper
in the store during their trip could help marketing
companies with the placement of products to further
increase profits.

In the future, we hope to conduct human trials
using the NSFH algorithm to navigate while simultane-
ously tracking the location of the individual venturing
indoors. During the creation of the image grids, it
came to our attention that mapping the grid with
equally spaced landscape images is time consuming
and tedious. In the trial, each point was individually
placed and measured using a tape measure before the
images were taken. We imagine a drone could be

Figure 6: Accuracy of the tracking algorithm at various
grid sizes and resolutions. We compared the estimate
of the tracking algorithm to the location of nine known
images. The plots show the mean (± SD) accuracy of
the algorithm for the five grid spacings and six photo
resolutions. The 5x12 grid did not produce results within
MATLAB due to unknown reasons.

Figure 7: Comparison of catchment areas for different
grid sizes. (a) The catchment area relative to a test
image in the 230-image grid spaced at 25.4 cm is well-
resolved compared to the catchment area (b) for the
same test image in the 32-image grid spaced at 76.2 cm.

programmed to capture images at specific intervals to
both increase the speed and accuracy of the landscape
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images.
Finally, additional modifications could improve

the performance of the algorithm. For example, using
color instead of grayscale images would provide more
visual information and might improve the tracking
precision. Also, it would be interesting to focus the
camera on the ceiling where the visual information
is more stable compared to the walls and hallway,
where changing artwork, moving people, and other
objects can alter the visual landscape. In line with
this, simple ceiling tiles of random patterns could be
developed to diversify the information and reduce the
chance of aliasing. Alternatively or in addition, a
camera could be directed to the floor below the agent;
the wealth of pattern variations inherent in terrazzo
flooring could be quite useful in this regard.
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Appendix
We created a new 3x10 grid of images equally spaced
at 0.885 m. We derived the 0.885-meter spacing by
first placing the two outside transects at 30 cm in from
the walls of the first-floor Richards Hall hallway to
avoid conflicts with the laboratory cart. Dividing the
width between these transects in half resulted in three
transects spaced equally at 0.885 m. We then used this
value to equally space the 10 points on each transect.
After creation of the 30-point grid, 10 test points
were placed within the landscape. The test points
were placed in a specific manner to allow for different
scenarios and various distances from landscape images.
For example, some test points were placed directly
in the center of four landscape points while other
test points were placed relatively close to a certain
landscape point. We then measured the distance
between each of these test points and the four closest
points. The landscape points were marked on the
ground with a small strip of blue tape and a black
mark, while the test points were marked with orange
tape and a black mark. A Sony MHS-PM5K Bloggie
HD video camera with an upward facing panoramic
lens was attached to the top of a 1.93-meter wooden
board that was clamped vertically to a laboratory cart
to take photos at each marked location. Overall, the
camera was 1.98 meters from the ground which allowed
for humans to walk beneath without interfering with
the image. A plumb bob was attached directly below
the camera on the opposite, ground facing end of the
board to ensure that the images were directly above
the marked locations. Measurements were taken to
compare the tracking algorithm’s output against our
hand-measured location values. The results of the
these trials are shown in (Fig 8).
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Figure 8: Test of new test landscape images with test points. Left: The circularized panoramic images, represented
by blue circles, were arranged in a 3x10 grid landscape and equally spaced at 0.885 meters apart. The smaller
red circles represent the positions of the test images. Right: Accuracy of the tracking algorithm at various pixel
resolutions on the new landscape grid. The average localization error for the 10 points for pixel resolutions 20x20 –
100x100 was 31.6 ± 4.6 cm (SE). The accuracy for the 10x10 pixel resolution was approximately 2.4 times greater
than the average localization accuracy and the standard error was about 10 times greater. The 20x20 resolution
was the most accurate with a localization accuracy of 30.9 ± 4.7 cm
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